5 Bola pejal yang bermassa 2 kg dilempar vertikal ke atas dengan kecepatan awal sebesar 20 m/s.Apabila percepatan gravitasi di tempat tersebut diketahui 10 m/s 2, maka hitunglah energi potensial benda pada titik tertinggi!. Jawab: Diketahui: m = 2 kg Vo = 20 m/s g = 10 m/s 2 Vt = 0, h 1 = 0. Ditanyakan Ep 2 = ?. Berdasarkan konsep gerak vertikal ke atas:

Sebuah partikel & foton memiliki energi yg sama apabila ?manakah yg mempunyai energi yg lebih besar sebuah foton radiasi UltraViolet atau sebuah foton cahaya kuningsuatu partikel & foton memiliki energi yg sama apabilaSebuah partikel & foton memiliki energi yg sama apabilaSebuah elektron & suatu foton mempunyai panjang gelombang yg sama. Pernyataan yg sesuai dgn kondisi tersebut adalah …. a. energi elektron lebih besar ketimbang energi foton b momentum elektron sama dgn saat-saat foton c momentum elektron lebih besar dibandingkan dengan momentum foton d energi elektron lebih kecil ketimbang energi foton e momentum elektron lebih kecil daripada saat-saat foton tak mempunyai besaran yg sama atau variabel manakah yg mempunyai energi yg lebih besar sebuah foton radiasi UltraViolet atau sebuah foton cahaya kuning radiasi Ultraviolet….. suatu partikel & foton memiliki energi yg sama apabila tak memiliki satu variabel atau besaran yg sama Sebuah partikel & foton memiliki energi yg sama apabila Partikel & foton memiliki energi yg sama tatkala momentumnya sama, sesuai rumusanE = hf = hC/A = pc Sebuah elektron & suatu foton mempunyai panjang gelombang yg sama. Pernyataan yg sesuai dgn kondisi tersebut adalah …. a. energi elektron lebih besar ketimbang energi foton b momentum elektron sama dgn saat-saat foton c momentum elektron lebih besar dibandingkan dengan momentum foton d energi elektron lebih kecil ketimbang energi foton e momentum elektron lebih kecil daripada saat-saat foton elektron sama dgn momentum foton

12Jika dua partikel memiliki energi kinetik yang sama, momentunya sama selama mereka bergerak disepanjang garis paralel SEBAB Bak tersebut akan diisi air melalui sebuah pipa yang memiliki ujung-ujung dengan luas penampang yang sama. Jika laju aliran air pada ujung masuk 5 m/s dan pada ujung keluar 3 m/s, tentukan besarnya perbedaan tekanan
Pengertian FotonFoton adalah kuanta cahaya, atau partikel dasar yang mentransmisikan gelombang elektromagnetik cahaya. Cahaya yang terlihat merupakan contoh foton yang sangat bagus. Beberapa nilai fisik, termasuk panjang gelombang dan frekuensi diukur dalam hertz, atau Hz, yang menandai foton dianggap sebagai pembawa radiasi elektromagnetik, seperti cahaya, gelombang radio, dan Sinar-X. Foton berbeda dengan partikel elementer lain seperti elektron dan quark, karena ia tidak bermassa dan dalam ruang vakum foton selalu bergerak dengan kecepatan cahaya, c. Foton memiliki baik sifat gelombang maupun partikel “dualisme gelombang-partikel“.Sebagai gelombang, satu foton tunggal tersebar di seluruh ruang dan menunjukkan fenomena gelombang seperti pembiasan oleh lensa dan interferensi destruktif ketika gelombang terpantulkan saling memusnahkan satu sama FotonSebagai partikel, foton hanya dapat berinteraksi dengan materi dengan memindahkan energi sejumlah,di mana adalah konstanta Planck, adalah laju cahaya, dan adalah panjang energi partikel foton juga membawa momentum dan memiliki polarisasi. Foton mematuhi hukum mekanika kuantum, yang berarti kerap kali besaran-besaran tersebut tidak dapat diukur dengan cermat. Biasanya besaran-besaran tersebut didefinisikan sebagai probabilitas mengukur polarisasi, posisi, atau momentum contoh, meskipun sebuah foton dapat mengeksitasi satu molekul tertentu, sering tidak mungkin meramalkan sebelumnya molekul yang mana yang akan foton sebagai pembawa radiasi elektromagnetik biasa digunakan oleh para fisikawan. Namun dalam fisika teoretis sebuah foton dapat dianggap sebagai mediator buat segala jenis interaksi elektromagnetik, seperti medan magnet dan gaya tolak-menolak antara muatan Menghitung Energi FotonAnda dapat menghitung energi foton, berdasarkan frekuensi atau panjang gelombang, dengan bantuan konstanta fisik mendasar tertentu. Catat nilai konstanta fisik yang diperlukan untuk perhitungan perhitungan energi. Dalam hal ini, mereka adalahKecepatan cahaya c = 299,792,458 m / sKonstanta planck h = 4,13566766225×10−15 atau 4,13566766225 E-15Perhatikan bahwa elektron volt eV adalah satuan yang biasa digunakan untuk mengekspresikan energi kecepatan cahaya dan konstanta Planck, dan bagi hasil kalinya dengan panjang gelombang untuk menghitung energi foton. Misalnya, foton cahaya tampak kuning memiliki panjang gelombang sekitar 580 nm atau 5,8E-7 m. Dengan demikian, energinya adalah m / s x eV s / m = bahwa awalan “nano” n menunjukkan 10 pangkat lain adalah dengan mengalikan frekuensi foton dan konstanta Planck untuk menghitung energi foton. Misalnya, frekuensi foton yang sesuai dengan sinar ultraviolet UV adalah Hz atau 780 Thz; energi foton adalah Hz x eV s = 3,23 bahwa awalan “tera” T berarti 10 pangkat 12 ayau energi dalam eV dengan faktor untuk menghitungnya dalam joule J, jika perlu. Misalnya, energi 3,23 eV akan dikonversi menjadi yang dipancarkan dalam berkas koheren laser. Sumber foto Wikimedia CommonsKonsep Modern FotonKonsep modern foton dikembangkan secara berangsur-angsur antara 1905-1917 oleh Albert Einstein untuk menjelaskan pengamatan eksperimental yang tidak memenuhi model klasik untuk cahaya. Model foton khususnya memperhitungkan ketergantungan energi cahaya terhadap frekuensi; dan menjelaskan kemampuan materi dan radiasi elektromagnetik untuk berada dalam kesetimbangan lain mencoba menjelaskan anomali pengamatan ini dengan model semiklasik, yang masih menggunakan persamaan Maxwell untuk mendeskripsikan cahaya. Namun dalam model ini objek material yang mengemisi dan menyerap cahaya dikuantisasi. Meskipun model-model semiklasik ini ikut menyumbang dalam pengembangan mekanika kuantum, percobaan-percobaan lebih lanjut membuktikan hipotesis Einstein bahwa cahaya itu sendirilah yang terkuantisasi. Kuantum cahaya adalah foton telah membawa kemajuan berarti dalam fisika teoretis dan eksperimental, seperti laser, kondensasi Bose-Einstein, teori medan kuantum dan interpretasi probabilistik dari mekanika kuantum. Menurut model standar fisika partikel, foton bertanggung jawab dalam memproduksi semua medan listrik dan medan magnet dan foton sendiri merupakan hasil persyaratan bahwa hukum-hukum fisika memiliki kesetangkupan pada tiap titik pada ruang-waktu. Sifat-sifat intrinsik foton seperti muatan listrik, massa dan spin ditentukan dari kesetangkupan gauge foton diterapkan dalam banyak area seperti fotokimia, mikroskopi resolusi tinggi dan pengukuran jarak molekuler. Baru-baru ini foton dipelajari sebagai unsur komputer kuantum dan untuk aplikasi canggih dalam komunikasi optik seperti kriptografi awalnya dinamakan sebagai kuantum cahaya das Lichtquant oleh Albert Einstein. Nama modern “photon” berasal dari kata Bahasa Yunani untuk cahaya φ, ditransliterasi sebagai phôs, dan ditelurkan oleh kimiawan fisik Gilbert N. Lewis, yang menerbitkan teori spekulatif yang menyebutkan foton sebagai “tidak dapat diciptakan atau dimusnahkan”. Meskipun teori Lewis ini tidak dapat diterima karena bertentangan dengan hasil banyak percobaan, nama barunya ini, photon, segera diadopsi oleh kebanyakan fisikawan. Isaac Asimov menyebut Arthur Compton sebagai orang yang pertama kali mendefinisikan kuantum cahaya sebagai foton pada tahun fisika, foton biasanya dilambangkan oleh simbol γ abjad Yunani gamma. Simbol ini kemungkinan berasal dari sinar gamma, yang ditemukan dan dinamakan oleh Villard, dan dibuktikan sebagai salah satu bentuk radiasi elektromagnetik pada 1914 oleh Ernest Rutherford dan Edward kimia dan rekayasa optik, foton biasanya dilambangkan oleh , energi foton, adalah konstanta Planck dan abjad Yunani adalah frekuensi foton. Agak jarang ditemukan adalah foton disimbolkan sebagai hf, fdi sini melambangkan Fisik FotonFoton tidak bermassa, tidak memiliki muatan listrik, dan tidak meluruh secara spontan di ruang hampa. Sebuah foton memiliki dua keadaan polarisasi yang dimungkinkan, dan dapat dideskripsikan dengn tiga parameter kontinu komponen-komponen vektor gelombang, yang menentukan panjang gelombangnya dan arah perambatannya. Foton adalah boson gauge untuk elektromagnetisme, dan sebab itu semua bilangan kuantum lainnya seperti bilangan lepton, bilangan baryon atau strangeness bernilai persis diemisikan dalam banyak proses alamiah, contohnya ketika muatan dipercepat, saat transisi molekuler, atomik atau nuklir ke tingkat energi yang lebih rendah, atau ketika sebuah partikel dan antipartikel bertumbukan dan saling memusnahkan. Foton diserap dalam proses dengan waktu mundur time-reversed yang berkaitan dengan yang sudah disebut di atas contohnya dalam produksi pasangan partikel-antipartikel, atau dalam transisi molekuler, atomik atau nuklir ke tingkat energi yang lebih ruang hampa foton bergerak dengan laju laju cahaya. Energinya dan momentum dihubungkan dalam persamaan , di mana merupakan nilai momentum. Sebagai perbandingan, persamaan terkait untuk partikel dengan massa adalah , sesuai dengan teori relativitas Soal dan Jawaban FotonSoal Fisika Teori Kuantum Planck SMA XII. Contoh Soal dan Pembahasan tentang Teori Kuantum Planck, Materi Fisika kelas 3 XII SMA, dengan kata kunci daya, intensitas, kuanta energi dan jumlah foton. Selihakan dipelajari dan selamat MinimalEnergi Foton E = hf E = h c/λ Energi Foton Sejumlah n E = nhf E = nh c/λ Konversi 1 elektron volt = 1 eV = 1,6 x 10−19 joule 1 angstrom = 1 Å = 10−10 meter 1 nanometer = 1 nm = 10−9 meter Daya → Energi tiap sekon Intensitas → Energi tiap sekon persatuan luas Contoh Soal dan Pembahasan Teori Kuantum Plank1. Tentukan kuanta energi yang terkandung dalam sinar dengan panjang gelombang 6600 Å jika kecepatan cahaya adalah 3 x 108 m/s dan tetapan Planck adalah 6,6 x 10−34 Js !PembahasanE = hc/λ E = 6,6 x 10−34 3 x 108/6600 x 10−10 = 3 x 10−19 joule2. Bola lampu mempunyai spesifikasi 132 W/220 V, ketika dinyalakan pada sumber tegangan 110 V memancarkan cahaya dengan panjang gelombang 628 nm. Bila lampu meradiasikan secara seragam ke segala arah, maka jumlah foton yang tiba persatuan waktu persatuan luas di tempat yang berjarak 2,5 m dari lampu adalah … h =6, J s A 5,33 . 1018 m−2 B 4,33 . 1018 m−2 C 3,33 . 1018 m−2 D 2,33 . 1018 m−2 E 1,33 . 1018 m−2Pembahasan Daya Lampu yang memiliki spesifikasi 132 W/220 V saat dipasang pada tegangan 110 V dayanya akan turun menjadi P2 =V2/V12 x P1 P2 =110/2202 x 132 watt = 33 wattIntensitas daya persatuan luas pada jarak 2,5 meter I = P/A dengan A adalah luas permukaan, anggap berbentuk bola luas bola empat kali luas lingkaran. I = P/4π r2 I = 33/4π 2,52 = 0,42 watt/m2 0,42 watt/m2 → Energi tiap sekon persatuan luas adalah 0,42 foton n n = 0,42 hc/λ = [ 0,42 ] [ 6,6 x 10−34 3 x 108 / 628 x 10−9 ] = 0,42 3,15 x 10−19 n = 1,33 x 1018 foton3. Panjang gelombang cahaya yang dipancarkan oleh lampu monokromatis 100 watt adalah 5, m. Cacah foton partikel cahaya per sekon yang dipancarkan sekitar….A. 2,8 x 1022 /s B. 2,0 x 1022 /s C. 2,6 x 1020 /s D. 2,8 x 1020 /s E. 2,0 x 1020 /sPembahasan Data P = 100 watt → Energi yang dipancarkan tiap sekon adalah 100 1 foton E = hc/λ E = 6,6 x 10−34 3 x 108/5,5 x 10−7 jouleJumlah foton n n = 100 joule [ 6,6 x 10−34 3 x 108/5,5 x 10−7 joule] = 2,8 x 1020 Intensitas radiasi yang diterima pada dinding dari tungku pemanas ruangan adalah 66,3 Jika tungku ruangan dianggap benda hitam dan radiasi gelombang elektromagnetik pada panjang gelombang 600 nm, maka jumlah foton yang mengenai dinding persatuan luas persatuan waktu adalah ….h = 6,63 x10− 34 c = 3 x 108 1A. 1 x 1019 foton B. 2 x 1019 foton C. 2 x 1020 foton D. 5 x 1020 foton E. 5 x 1021 fotonPembahasan Data I = 66,3 → Energi yang diterima tiap sekon tiap meter persegi adalah 66,3 1 foton E = hc/λ E = 6,63 x 10−34 3 x 108/600 x 10−9 jouleJumlah foton tiap sekon tiap satuan luas adalah n = 66,3 joule [ 6,63 x 10−34 3 x 108/600 x 10−9 joule] = 2 x 1020 foton5. Tentukan perbandingan kuanta energi yang terkandung dalam sinar dengan panjang gelombang 6000 Å dan sinar dengan panjang gelombang 4000 Å !PemnahasanData λ1 = 6000 Å λ2 = 4000 ÅE = hc/λ E1/E2 = λ2 λ1 = 4000 6000 = 2 36. Energi foton sinar gamma adalah 108 eV. Jika h = 6,6 x 10−34 Js dan c = 3 x 108 m/s, tentukan panjang gelombang sinar gamma tersebut dalam satuan angstrom!PemhasanData E = 108 eV = 108 x 1,6 x 10−19 joule = 1,6 x 10−11 joule h = 6,6 x 10−34 Js c = 3 x 108 m/s λ = …?λ = hc / E λ = 6,6 x 10−343 x 108 / 1,6 x 10−11 λ = 12,375 x 10−15 meter =12,375 x 10−15 x 1010 Å = 12,375 x 10−5 ÅBacaan LainnyaRumus Gerak Fisika – Gerak Lurus Beraturan, Gerak Lurus Berubah Beraturan, Melingkar, Parabola – Beserta Soal dan JawabanJenis, Kelas, Klasifikasi – Panjang Gelombang Sinar LaserCara Buat Jeans Belel – 10 Cara Mudah Pasti BerhasilKutipan Quote Terkenal – Kata Bijak, Kata MutiaraCara Menganalisa Saham Seperti Ahli Pasar Saham ProfesionalPasar Keuangan – Definisi, Pengertian, Jenis dan ContohUang Rupiah Negara Indonesia – Sejarah Nilai Tukar Rupiah Terhadap USDTempat Wisata Yang Harus Dikunjungi Di Tokyo – Top 10 Obyek Wisata Yang Harus Anda KunjungiCara Membeli Tiket Pesawat Murah Secara Online Untuk Liburan Atau BisnisTibet Adalah Provinsi Cina – Sejarah Dan BudayaPuncak Gunung Tertinggi Di Dunia dimana?TOP 10 Gempa Bumi Terdahsyat Di DuniaApakah Matahari Berputar Mengelilingi Pada Dirinya Sendiri?Test IPA Planet Apa Yang Terdekat Dengan Matahari?10 Cara Belajar Pintar, Efektif, Cepat Dan Mudah Di Ingat – Untuk Ulangan & Ujian Pasti Sukses!TOP 10 Virus Paling Mematikan ManusiaUnduh / Download Aplikasi HP Pinter PandaiRespons “Ooo begitu ya…” akan lebih sering terdengar jika Anda mengunduh aplikasi kita!Siapa bilang mau pintar harus bayar? Aplikasi Ilmu pengetahuan dan informasi yang membuat Anda menjadi lebih smart!HP AndroidHP iOS AppleSumber bacaan StudyPinter Pandai “Bersama-Sama Berbagi Ilmu” Quiz Matematika IPA Geografi & Sejarah Info Unik Lainnya Business & Marketing
Sebuahatom akan memancarkan foton, apabila salah satu elektronnya .. A. meninggalkan atom itu. B. bertumbukan dengan elektron lainnya. C. bertukar tingkat energi dengan elektron yang lain. D. mengalami transisi ke tingkat energi yang lebih rendah. E. mengalami transisi ke tingkat energi yang lebih tinggi. 20. Daftar isiPengertian FotonSifat FotonFenomena Perlambatan dan Percepatan FotonFenomena Bose-Einstein CondensateFenomena Blue GlowPada pembahasan kali ini kita akan membahas mengenai foton, berikut adalah partikel dasar elementer pada gelombang elektromagnetik. Dalam Fisika partikel, partikel dasar didefinisikan sebagai partikel yang belum diketahui penyusunnya, apakah partikel tersebut memiliki partikel lain yang menyusunnya atau foton disebut sebagai elemen terkecil dari gelombang elektromagnetik sebagaimana quark adalah elemen terkecil, dari yang terkecil, dari sebuah foton merupakan bagian dari gelombang elektromagnetik, maka ia juga memiliki sifat gelombang selain sifat partikel. Inilah yang menyebabkan gelombang elektromagnetik memiliki dualisme sifat sebagai gelombang dan berinteraksi dengan material lain hanya dengan memindahkan energi sejumlah E yang bersatuan Joule J maupun elektronvolt eV. Besarnya energi tersebut hanya bergantung pada frekuensi foton f.E = yang mana E = energi foton h = konstanta Planck 6,626x10-34 f = frekuensi gelombang elektromagnetik dalam HzDalam Kimia dan rekayasa optik, besaran frekuensi pada formula energi foton jarang menggunakan simbol f, tetapi menggunakan simbol v. Namun definisi formula tetap = yang mana v = frekuensi gelombang elektromagnetik dalam HzSelain energi, foton juga membawa momentum. Besarnya momentum foton dirumuskan dengan p = h/λ yang mana p = momentum foton dalam λ = panjang gelombang elektromagnetik dalam mSifat FotonSebagai partikel penyusun, foton memiliki sifat-sifat unik yang perlu tidak memiliki massa m=0.Foton tidak memiliki muatan, berbeda dengan elektron dan dapat berinteraksi dengan partikel dapat diciptakan dan dapat tidak meluruh secara spontan di ruang hampa. Inilah yang menyebabkan kita masih bisa melihat cahaya di ruang saat di ruang hampa tersebut, foton bergerak dengan kecepatan cahaya 3×108 m/det.Namun apabila melewati media lain, seperti air, kecepatan foton menurun menjadi hanya tiga perempat dari kecepatan sebelumnya menjadi menarik karena ternyata kecepatan foton dapat diperlambat bahkan dipercepat. Sebagaimana yang terjadi dalam pembuatan materi BSE Bose-Einstein Condensate dan peristiwa cahaya biru dalam reaktor Perlambatan dan Percepatan FotonFenomena Bose-Einstein CondensateBose-Einstein Condensate atau BSE merupakan wujud materi yang diciptakan oleh Eric Cornell dan Carl Weiman pada sekitar tahun 1955. Sebagaimana yang kita ketahui di dunia ini terdapat macam wujud materi seperti padat, cair, gas, dan plasma. BSE merupakan wujud materi yang Wujud Bose-Einstein CondensateDalam percobaannya, Eric Cornell dan Carl Weiman mendinginkan sampel dari rubidium hingga mendekati suhu mutlak yakni 0 K. Karena temperatur yang terbilang sangat rendah, moleku-molekul materi tersebut berada pada kedudukan nyaris diam sehingga nyaris tidak ada energi kinetik yang dipindahkan antar keadaan tersebut, atom-atom membentuk gumpalan secara bersamaan sehingga terlihat seperti sebuah super atom’. Apabila cahaya dilewatkan pada materi yang berwujud seperti ini, hamburan cahaya tadi memiliki kecepatan yang lebih kecil dari cahaya datangnya cahaya mengalami perlambatan, bahkan bisa mencapai 17 m/det Blue Glow Blue Glow atau Cahaya Biru adalah sebutan dari Radiasi Cherenkov yang ditemukan dalam reaktor nuklir, dimana partikel bermuatan ditembakkan dengan kecepatan yang sangat tinggi dalam medium dielektrik sejenis bahan isolator listrik yang dapat dikutubkan sehingga timbul keadaan dasar/keadaan dengan energi terendah vakum.Cahaya Biru dalam Reaktor NuklirKarena keadaan dapat dikatakan vakum itulah muncul sebuah fenomena radiasi. Radiasi tersebut memancarkan cahaya berwarna biru yang selanjutnya dikenal dengan blue glow yang kecepatannya melebihi kecepatan cahaya. Penemuan ini dicetuskan oleh ilmuwan Rusia, Pavel Alekseyevich Cherenkov. Daridata efisiensi kedua, η = 50% = 0,5 → (1 − η) = 0,5. Tr = 480 K. Suhu tingginya: Soal No. 8. Sebuah mesin Carnot bekerja pada pada suhu tinggi 627°C memiliki efisiensi 50%. Agar efisiensi maksimumnya naik menjadi 70% pada suhu rendah yang tetap, maka suhu tingginya harus dinaikkan menjadi. A. 1500°C. B. 1227°C.
Sponsors Link Foton diketahui sebagai senergi alami yang berasal dari alam. Energi foton merupakan energi yang kasat mata, berbeda dengan energi lain yang bisa ditangkap menggunakan pun merupakan sebuah partikel kecil dalam cabang ilmu fisika yang dapat membentuk dasar unit radiasi elektromagnetik. Radiasi tersebut biasanya berupa cahaya tampak, gelombang radio, sinar-x inframerah, ultraviolet, ataupun sinar gama. Foton tidak memiliki muatan listrik ataupun masa. Namun, foton memiliki pergerakan dengan kecepatan cahaya, maka ia tidak dapat ditangkap bisa kita lihat di kehidupan sehari-hari. Bayangkan kita memegang pedang cahaya yang dapat membelah cahaya menjadi tiga bagian. Bagian yang tengah kemudian kita belah lagi menjadi kecil. Bagian kecil-kecil tersebut kita belah lagi menjadi lebih kecil, dan dibelah lagi, dan seterusnya sampai semakin kecil. Semakin kita belah semakin kita temukan kumpulan energi. Energi tersebut adalah energi Mengenai FotonBerikut adalah beberapa fakta-fakta mengenai foton, yaitu1. Massanya nol2. Tidak bermuatan listrik3. Bersifat stabil4. Besarnya energi dan momentum yang dibawa foton tergantung frekuensinya5. Dapat berinteraksi dengan partikel lain seperti elektron6. Foton dapat hancur ataupun terciptakan melalui berbagai proses alami7. Ketika berada di ruang hampa udara seperti angkasa, foton bergerak dengan kecepatan cahaya yaitu sekitar km per detik8. Ketika berada dalam air, foton hanya mampu bergerak dengan kecepatan tiga perempat dari kecepatan cahaya. Kecepatan foton paling pelan yang pernah terdokumentasi adalah 17 meter per detik, dan ini terjadi saat pembuatan materi Bose-Einstein Foton dapat bergerak melebihi kecepatan cahaya seperti pada reaktor nuklir. Dalam sebuah reaktor nuklir, sejumlah partikel ditembakkan dengan kecepatan yang sangat tinggi sehingga akan menghasilkan cahaya biru yang melewati kecepatan cahaya. Cahaya biru ini biasa dikenal sebagai radiasi Foton dapat mengubah apa yang terjadi pada foton lain. Fenomena ini dibuktikan dalam sebuah penelitian oleh John Wheeler yang dilakukan pada tahun 1978 dalam sebuah eksperimen dua Memiliki sifat dualisme. Kita dapat mengenal foton sebagai sebuah partikel dan juga sebuah gelombang. Foton dapat dianggap sebagai gelombang karena foton memiliki sifat yang dapat dibiaskan atau dibelokkan, contohnya adalah fenomena bengkoknya pensil yang dimasukkan ke dalam gelas berisi air. Fenomena ini merupakan salah satu sifat cahaya. Selain itu, foton juga dapat dipantulkan dengan besar sudut pantul yang sama dengan sudut datang jika bertabrakan dengan sebuah permukaan beneda. Fenomena tersebut menyebabkan kita dapat melihat suatu Dapat bertindak sebagai partikel. Dengan adanya sifat ini, foton dapat berinteraksi dengan partikel lain. Contohnya adalah fenomena panasnya permukaan aspal, dimana hal tersebut terjadi karena adanya sebagian energi dari cahaya materi yang diserap oleh aspal, sehingga permukaan aspal menjadi panas. Energi yang diserap dari cahaya oleh partikel aspal hanya terjadi apaila foton adalah sebuah partikel. Hal tersebut tidak akan mungkin terjadi jika foton berdiri sebagai Dengan FotonKita berinteraksi dengan foton dalam hidup sehari-hari kita. Contohnya yang paling mudah adalah saat foton menabrak retina mata. Ketika fenomena tersebut terjadi, energi elektromagnetik foton akan berubah menjadi energi listrik yang kemudian akan ditransmisikan ke otak kita melalui sistem syaraf mata. Konversi energi elektromagnetik foton menjadi energi listrik dikenal sebagai fotoelektrik, dan biasanya fotoelektrik dapat ditemukan dalam panel surya yang memiliki fungsi untuk mengubah energi sinar matahari menjadi energi Energi Foton Dengan Momentum FotonMomentum foton biasa ditemukan dalam efek Compton, yaitu peristiwa terhamburnya sinar X foton ketika menumbuk elektron diam menjadi foton terhambur dan elektron. Rumus dari momentum foton adalah sebagai berikut p=h/λh adalah konstan Planck yang berasal dari teori radiasi Planck, sementara λ adalah panjang gelombang foton tersebut. Momentum foton sangat kecil karena h juga sangat kecil. Hal ini karena kita tidak biasa mengobservasi momentum Energi FotonRumus dari energi foton adalah sebagai berikutE adalah energi foton, h adalah konstanta Planck, c adalah kecepatan cahaya dalam ruang hampa, dan λ adalah penjang gelombang foton. Kedua h dan c adalah konstan, sehingga energi foton E berubah dalam hubungan terbalik dengan panjang gelombang Aplikasi Energi FotonBerikut adalah beberapa contoh aplikasi energi foton dan penggunaan Sebuah radio FM yang mentrasmisikan stasiun pada 100 MHz memancarkan foton dengan energi sekitar 4,1357 × 10 −7 eV. Jumlah energi tersebut adalah sekitar 8 × 10 −13 dikali dengan massa Sinar gama energi yang sangat tinggi memiliki energi foton 100 GeV hingga 100 TeV atau 16 nanojoules hingga 16 microjoule. Hal tersebut sesuai dengan frekuensi 2,42 × 10 25 hingga 2,42 × 10 28 Selama fotosintesis, molekul klorofil spesifik menyerap foton lampu merah pada panjang gelombang 700 nm. Untuk sintesis satu molekula glukosa tunggal dari CO2 dan air, diperluka setidaknya 48 foton dengan efisiensi konversi energi maksimal 35%.Demikian mengenai energi foton, perbedannya dengan momentum foton, dan aplikasi energi foton dalam hidup sehari-hari. Walaupun kita tidak dapat melihatnya secara langsung, sudah pasti energi foton ada di sekitar kita. Sponsors Link
Sifta– sifat sinar gamma yaitu : Tidak memiliki massa. Memiliki daya tembus yang sangat kuat ( dapat menembus lempeng timbal setebal 20 cm ) Daya ionnisasi paling lemah, tidak bermuatan listrik, oleh karena itu tidak dapat dibelokkan oleh medan listrik. Berasal dari aktivitas radioaktif ataupun poses muklir.
A. Efek Fotolistrik Efek fotolistrik adalah peristiwa terlepasnya elektron dari permukaan logam karena logam tersebut disinari cahaya dengan frekuensi tertentu. Elektron yang terlepas dari permukaan logam tersebut disebut dengan elektron foto photoelectrons. Gambar dibawah ini menggambarkan skema alat yang digunakan untuk mengadakan percobaan Efek fotolistrik Alat tersebut terdiri atas tabung hampa udara yang dilengkapi dengan dua elektroda A dan B dan dihubungkan dengan sumber tegangan arus searah DC. Pada saat alat tersebut dibawa ke dalam ruang gelap, maka amperemeter tidak menunjukkan adanya arus listrik. Akan tetapi pada saat permukaan Katoda A dijatuhkan sinar amperemeter menunjukkan adanya arus listrik. Hal ini menunjukkan adanya aliran arus listrik. Aliran arus ini terjadi karena adanya elektron yang terlepas dari permukaan A bergerak menuju B. Apabila tegangan baterai diperkecil sedikit demi sedikit, ternyata arus listrik juga semakin mengecil dan jika tegangan terus diperkecil sampai nilainya negatif, ternyata pada saat tegangan mencapai nilai tertentu -Vo, amperemeter menunjuk angka nol yang berarti tidak ada arus listrik yang mengalir atau tidak ada elektron yang keluar dari keping A. Potensial Vo ini disebut potensial henti, yang nilainya tidak tergantung pada intensitas cahaya yang dijatuhkan. Hal ini menunjukkan bahwa energi kinetik maksimum elektron yang keluar dari permukaan adalah sebesar dengan Ek = energi kinetik elektron foto J atau eV m = massa elektron kg v = kecepatan elektron m/s e = muatan elektron C Vo = potensial henti volt Berdasarkan hasil percobaan tersebut ternyata tidak semua cahaya foton yang dijatuhkan pada keping akan menimbulkan efek fotolistrik. Efek fotolistrik akan timbul jika frekuensinya lebih besar dari frekuensi tertentu. Demikian juga frekuensi minimal yang mampu menimbulkan efek fotolistrik tergantung pada jenis logam yang dipakai. Teori gelombang belum dapat menjelaskan tentang sifat-sifat penting yang terjadi pada efek fotolistrik,yaitu a. Menurut teori gelombang, energi kinetik elektron foto harus bertambah besar jika intensitas foton diperbesar. Akan tetapi kenyataan menunjukkan bahwa energi kinetik elektron foto tidak tergantung pada intensitas foton yang dijatuhkan. b. Menurut teori gelombang, efek fotolistrik dapat terjadi pada sembarang frekuensi, asal intensitasnya memenuhi. Akan tetapi kenyataannya efek fotolistrik baru akan terjadi jika frekuensi melebihi harga tertentu dan untuk logam tertentu dibutuhkan frekuensi minimal yang tertentu agar dapat timbul elektron foto. c. Menurut teori gelombang diperlukan waktu yang cukup untuk melepaskan elektron dari permukaan logam. Akan tetapi kenyataannya elektron terlepas dari permukaan logam dalam waktu singkat spontan dalam waktu kurang 10-9 sekon setelah waktu penyinaran. d. Teori gelombang tidak dapat menjelaskan mengapa energi kinetik maksimum elektron foto bertambah jika frekuensi foton yang dijatuhkan diperbesar. Teori kuantum mampu menjelaskan peristiwa ini karena menurut teori kuantum bahwa foton memiliki energi yang sama, yaitu sebesar hf, sehingga menaikkan intensitas foton berarti hanya menambah banyaknya foton, tidak menambah energi foton selama frekuensi foton tetap. Menurut Einstein energi yang dibawa foton adalah dalam bentuk paket, sehingga energi ini jika diberikan pada elektron akan diberikan seluruhnya, sehingga foton tersebut lenyap. Oleh karena elektron terikat pada energi ikat tertentu, maka diperlukan energi minimal sebesar energi ikat elektron tersebut. Besarnya energi minimal yang diperlukan untuk melepaskan elektron dari energi ikatnya disebut fungsi kerja Wo atau energi ambang. Besarnya Wo tergantung pada jenis logam yang digunakan. Apabila energi foton yang diberikan pada elektron lebih besar dari fungsi kerjanya, maka kelebihan energi tersebut akan berubah menjadi energi kinetik elektron. Akan tetapi jika energi foton lebih kecil dari energi ambangnya hf f’, sedangkan panjang gelombang yang terhambur menjadi tambah besar yaitu l > l ’. Dengan menggunakan hukum kekekalan momentum dan kekekalan energi Compton berhasil menunjukkan bahwa perubahan panjang gelombang foton terhambur dengan panjang gelombang semula, yang memenuhi persamaan dengan l = panjang gelombang sinar X sebelum tumbukan m l ’= panjang gelombang sinar X setelah tumbukan m h = konstanta Planck 6,625 × 10-34 Js mO = massa diam elektron 9,1 × 10-31 kg c = kecepatan cahaya 3 × 108 ms-1 q = sudut hamburan sinar X terhadap arah semula Besaran sering disebut dengan panjang gelombang Compton. Jadi dengan hasil pengamatan Compton tentang hamburan foton dari sinar X menunjukkan bahwa foton dapat dipandang sebagai partikel, sehingga memperkuat teori kuantum yang mengatakan bahwa cahaya mempunyai dua sifat, yaitu cahaya dapat sebagai gelombang dan cahaya dapat bersifat sebagai partikel yang sering disebut sebagai dualisme gelombang cahaya. Soal latihan Soal Fisika Kelas 12 Tentang Dualisme Gelombang Partikel
Sekarangmari kita tentukan besar energi potensial gravitasi sebuah benda di dekat permukaan bumi. Misalnya kita mengangkat sebuah batu bermassa m. gaya angkat yang kita berikan pada batu paling tidak sama dengan gaya berat yang bekerja pada batu tersebut, yakni mg (massa kali percepatan gravitasi).Untuk mengangkat batu dari permukaan tanah hingga mencapai
Hadiah Nobel Fisika 2022 memberikan penghargaan kepada tiga ilmuwan yang memberikan kontribusi terobosan dalam memahami salah satu fenomena alam yang paling misterius quantum entanglement. Dalam istilah yang paling sederhana, quantum entanglement merujuk pada aspek-aspek dari satu partikel dari sepasang partikel yang terjerat bergantung pada aspek-aspek dari partikel lainnya, tidak peduli seberapa jauh jaraknya atau apa yang ada di antara keduanya. Partikel-partikel ini dapat berupa, misalnya, elektron atau foton, dan aspeknya dapat berupa keadaan partikel tersebut, seperti apakah partikel tersebut berputar ke satu arah atau ke arah lain. Bagian yang aneh dari quantum entanglement adalah ketika kita mengukur sesuatu tentang satu partikel dalam pasangan yang saling terkait, kita segera mengetahui sesuatu tentang partikel lainnya, bahkan jika mereka terpisah jutaan tahun cahaya. Hubungan aneh antara dua partikel ini terjadi seketika, tampaknya melanggar hukum dasar alam semesta. Albert Einstein secara terkenal menyebut fenomena ini sebagai “aksi menyeramkan dari kejauhan”. Setelah menghabiskan waktu selama dua dekade melakukan eksperimen yang berakar pada mekanika kuantum, saya mulai menerima keanehannya. Berkat instrumen yang semakin tepat dan dapat diandalkan serta karya pemenang Nobel tahun ini, yaitu Alain Aspect, John Clauser, dan Anton Zeilinger, para ahli fisika sekarang mengintegrasikan fenomena kuantum ke dalam pengetahuan mereka tentang dunia dengan tingkat kepastian yang luar biasa. Namun, bahkan hingga tahun 1970-an, para peneliti masih terpecah belah mengenai apakah quantum entanglement merupakan fenomena yang nyata. Dan untuk alasan yang bagus - siapa yang berani menentang Einstein yang hebat, siapa pula yang meragukannya? Butuh pengembangan teknologi eksperimental baru dan peneliti yang berani untuk akhirnya menguak misteri ini. Menurut mekanika kuantum, partikel secara bersamaan berada dalam dua keadaan atau lebih hingga teramati - efek yang secara gamblang ditangkap oleh eksperimen pemikiran Schrödinger yang terkenal, yaitu seekor kucing yang mati dan hidup secara bersamaan. Michael Holloway/Wikimedia Commons, CC BY-SA Quantum superposition ada dalam beberapa keadaan sekaligus Untuk benar-benar memahami seramnya quantum entanglement, penting untuk terlebih dahulu memahami quantum superposition superposisi kuantum. Superposisi kuantum adalah gagasan bahwa partikel berada dalam beberapa keadaan sekaligus. Ketika pengukuran dilakukan, seolah-olah partikel memilih salah satu keadaan dalam superposisi. Sebagai contoh, banyak partikel memiliki atribut yang disebut spin yang diukur sebagai “naik” atau “turun” untuk orientasi tertentu dari penganalisis. Namun, sampai kita mengukur spin sebuah partikel, partikel tersebut secara simultan berada dalam superposisi spin up dan spin down. Ada probabilitas yang melekat pada setiap keadaan, dan dimungkinkan untuk memprediksi hasil rata-rata dari banyak pengukuran. Kemungkinan sebuah pengukuran menjadi naik atau turun bergantung pada probabilitas ini, tetapi tidak dapat diprediksi. Meskipun sangat aneh, beberapa perhitungan dan sejumlah besar eksperimen telah menunjukkan bahwa mekanika kuantum dengan tepat menggambarkan realitas fisik. Albert Einstein, Boris Podolsky, dan Nathan Rosen menunjukkan sebuah masalah yang tampak jelas dengan keterikatan kuantum pada tahun 1935 yang mendorong Einstein untuk mendeskripsikan keterikatan kuantum sebagai aksi menyeramkan dari kejauhan. Sophie Dela/Wikimedia Commons Quantum entanglement dua partikel yang terjerat Hal yang menyeramkan dari quantum entaglement muncul dari realitas superposisi kuantum, dan jelas bagi para pendiri mekanika kuantum yang mengembangkan teori ini pada tahun 1920-an dan 1930-an. Untuk membuat partikel terjerat, pada dasarnya kita memecah sebuah sistem menjadi dua, di mana jumlah bagian-bagiannya diketahui. Sebagai contoh, kita bisa membagi sebuah partikel dengan spin nol menjadi dua partikel yang memiliki spin berlawanan sehingga jumlah keduanya adalah nol. Pada tahun 1935, Albert Einstein, Boris Podolsky, dan Nathan Rosen menerbitkan sebuah makalah yang menggambarkan sebuah eksperimen pemikiran yang dirancang untuk mengilustrasikan ketidakmasukakalan dari quantum entanglement yang menantang hukum dasar alam semesta. Sebuah versi sederhana dari eksperimen pemikiran ini yang dikaitkan dengan David Bohm, mempertimbangkan peluruhan sebuah partikel yang disebut pi meson. Ketika partikel ini meluruh, ia menghasilkan elektron dan positron yang memiliki spin berlawanan dan bergerak menjauh satu sama lain. Oleh karena itu, jika spin elektron diukur naik, maka spin positron yang terukur hanya bisa turun, dan sebaliknya. Hal ini berlaku meskipun partikel-partikel tersebut terpisah miliaran mil. Entanglement dapat tercipta di antara sepasang partikel dengan satu partikel terukur berputar ke atas dan satu partikel lagi berputar ke bawah. atdigit/iStock via Getty Images Hal ini akan baik-baik saja jika pengukuran spin elektron selalu naik dan spin positron yang diukur selalu turun. Tetapi karena mekanika kuantum, spin setiap partikel adalah sebagian naik dan sebagian turun sampai diukur. Hanya ketika pengukuran terjadi, keadaan kuantum spin “runtuh” menjadi naik atau turun - seketika meruntuhkan partikel lainnya ke spin yang berlawanan. Hal ini tampaknya menunjukkan bahwa partikel-partikel tersebut berkomunikasi satu sama lain melalui suatu cara yang bergerak lebih cepat daripada kecepatan cahaya. Tetapi menurut hukum fisika, tidak ada yang bisa bergerak lebih cepat daripada kecepatan cahaya. Tentunya keadaan terukur dari satu partikel tidak dapat secara instan menentukan keadaan partikel lain di ujung alam semesta? Fisikawan, termasuk Einstein, mengajukan sejumlah interpretasi alternatif tentang quantum entanglement pada tahun 1930-an. Mereka berteori bahwa ada beberapa properti yang tidak diketahui - dijuluki variabel tersembunyi - yang menentukan keadaan partikel sebelum pengukuran. Namun pada saat itu, para fisikawan tidak memiliki teknologi atau definisi pengukuran yang jelas yang dapat menguji apakah teori kuantum perlu dimodifikasi untuk menyertakan variabel tersembunyi. John Bell, seorang fisikawan Irlandia, menemukan cara untuk menguji realitas apakah keterikatan kuantum bergantung pada variabel-variabel tersembunyi. CERN, CC BY Memfalsifikasi sebuah teori Butuh waktu hingga tahun 1960-an sebelum ada petunjuk untuk mendapatkan jawabannya. John Bell, seorang fisikawan brilian asal Irlandia yang tidak sempat menerima hadiah Nobel, merancang sebuah skema untuk menguji apakah gagasan tentang variabel tersembunyi itu masuk akal. Bell menghasilkan sebuah persamaan yang sekarang dikenal sebagai bell’s inequality yang selalu benar - dan yang hanya benar - untuk teori-teori variabel tersembunyi, dan tidak selalu benar untuk mekanika kuantum. Dengan demikian, jika bell’s inequality ditemukan tidak memuaskan dalam eksperimen dunia nyata, teori variabel tersembunyi lokal dapat dikesampingkan sebagai penjelasan untuk quantum entanglement. Eksperimen para pemenang Nobel 2022, terutama yang dilakukan oleh Alain Aspect, adalah yang pertama menguji bells inequality. Eksperimen ini menggunakan foton yang terjerat, bukan pasangan elektron dan positron, seperti pada banyak eksperimen lainnya. Hasilnya secara meyakinkan mengesampingkan keberadaan variabel tersembunyi, sebuah atribut misterius yang akan menentukan keadaan partikel yang terjerat. Secara kolektif, ini dan banyak tindak lanjut eksperimen telah membuktikan mekanika kuantum. Objek-objek dapat dikorelasikan dalam jarak yang sangat jauh dengan cara yang tidak dapat dijelaskan oleh fisika sebelum mekanika kuantum. Yang terpenting, tidak ada konflik dengan relativitas khusus, yang melarang komunikasi yang lebih cepat dari cahaya. Fakta bahwa pengukuran pada jarak yang sangat jauh berkorelasi tidak menyiratkan bahwa informasi ditransmisikan di antara partikel-partikel. Dua pihak yang berjauhan melakukan pengukuran pada partikel-partikel yang saling terkait tidak dapat menggunakan fenomena ini untuk menyampaikan informasi lebih cepat dari kecepatan cahaya. Saat ini, para fisikawan terus meneliti quantum entanglement dan menyelidiki potensi aplikasi praktis. Meskipun mekanika kuantum dapat memprediksi probabilitas pengukuran dengan akurasi yang luar biasa, banyak peneliti tetap skeptis bahwa mekanika kuantum memberikan gambaran yang lengkap tentang realitas. Namun, satu hal yang pasti. Masih banyak yang harus dikatakan tentang dunia mekanika kuantum yang misterius. Demetrius Adyatma pangestu dari Universitas Bina Nusantara menerjemahkan artikel ini dari bahasa Inggris
Padakesempatan yang sama, Kepala ORNM BRIN, Ratno Nuryadi memberikan sambutan bahwa webinar ini merupakan sebuah acara yang sangat penting dan membanggakan untuk kita semua. “Kita dapat berdiskusi dalam mengeksplorasi peluang-peluang yang bisa diberikan pada kolaborasi riset internasional di tingkat global khususnya ALICE di Swiss,” ucapnya.
Pada percobaan hamburan Compton, elektron ditembakkan oleh sinar dengan frekuensi yang memiliki energi foton . Setelah menumbuk elektron, sebagian energi sinar tersebut diambil untuk menghamburkan partikel elektron, sehingga elektron punya kecepatan dan energi kinetik. Konsekuensinya adalah foton yang terhambur memiliki energi yang lebih kecil dari dan karena itu frekuensi foton menjadi berkurang dan panjang gelombang setelah hamburan bertambah. Lihatlah gambar berikut! Kita dapat menggunakan proyeksi λ’ sebagai λ. Sehingga Maka panjang gelombang foton setelah tumbukkan adalah 0,800945 nm.

A Latar Belakang. Dari zaman yunani kuno hingga sekarang, model dan teori atom terus berkembang. Perkembangan teori atom merupakan suatu perubahan yang terjadi akibat dari pemikiran atau pendapat para ahli yang berbeda disesuaikan dengan perubahan zamannya. Perkembangan tersebut tidak dapat dilepaskan dari upaya para ilmuwan diantaranya, John

Apabilasuatu partikel yang semula diam dan memiliki percepatan 2 mdet 2 kita from MANAGEMENT 001 at Satya Wacana Christian University. Study Resources. Main Menu; Apabila suatu partikel yang semula diam dan memiliki. School Satya Wacana Christian University; Course Title MANAGEMENT 001; MenurutKanginan (2007 : 171), “Dalam peristiwa tumbukan (tabrakan), momentum total suatu sistem sesaat sebelum tumbukan sama dengan momentum total sistem sesudah tumbukan, asalkan tidak ada gaya luar yang bekerja pada sistem Roket adalah sebuah contoh dari sekian banyak peralatan yang dipergunakan penerapan hukum kekekalan momentum, Berbedadengan yang ditampilkan table periodic unsure, bahwa Plutonioum memiliki nomor atom 242, merupakan nuklida, memiliki jumlah proton dan neurton yang sama dalam satu inti. Plutonium dan Uranium memiliki nomor atom yang besar, dan unsure ini memancarkan radiasi. DhZtc.
  • u9lm0r3b0r.pages.dev/848
  • u9lm0r3b0r.pages.dev/995
  • u9lm0r3b0r.pages.dev/554
  • u9lm0r3b0r.pages.dev/845
  • u9lm0r3b0r.pages.dev/25
  • u9lm0r3b0r.pages.dev/784
  • u9lm0r3b0r.pages.dev/940
  • u9lm0r3b0r.pages.dev/462
  • sebuah partikel dan foton memiliki energi yang sama apabila